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1 Introduction 
 

   This Software Design Document establishes the software design for the Land 

Information System (LIS).  LIS is a project to build a high-resolution, high-performance 

land surface modeling and data assimilation system to support a wide range of land 

surface research activities and applications.  

   

    This document has been prepared in accordance with the requirements of the Task 

Agreement GSFC-CT-2 under Cooperative Agreement Notice CAN-00-OES-01 

Increasing Interoperability and Performance of Grand Challenge Applications in the 

Earth, Space, Life, and Microgravity Sciences, funded by NASA’s ESTO Computational 

Technologies (formerly High Performance Computing and Communications) Project.   
 

1.1 Purpose and goals 
 

   This document serves as the blueprint for the software development and 

implementation of the Land Information System (LIS).  

 

   The design goals of LIS are near real-time, high-resolution (up to 1km) global land data 

simulation executed on highly parallel computing platforms, with well defined, standard-

conforming interfaces and data structures to interface and inter-operate with other Earth 

system models, and with flexible and friendly web-based user interfaces.  

     

1.2 Scope  
 

     This document covers the design of all the LIS software components for the three-year 

duration of the LIS project.  The document focuses primarily on the implementation of 

the LIS software on a general-purpose Linux cluster system, and most of the component 

designs also apply to an SGI Origin 3000 system.  This document does not cover design 

for other hardware/software platforms.  

   
     Specifically, this design covers the following aspects of LIS:   

 

• Realistic land surface modeling. LIS will simulate the global land surface 

variables using various land surface models, driven by atmospheric “forcing data” 

(e.g., precipitation, radiation, wind speed, temperature, humidity) from various 

sources. 

• High performance computing. LIS will perform high-performance, parallel 

computing for near real-time, high-resolution land surface modeling research and 

operations.  

• Efficient data management. The high-resolution land surface simulation will 

produce a huge data throughput, and LIS will retrieve, store, interpolate, re-

project, sub-set, and backup the input and output data efficiently.   
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• Usability. LIS will provide intuitive web-based interfaces to users with varying 

levels of access to LIS data and system resources, and enforce user security 

policies.  

• Interoperable and portable computing. LIS will incorporate the ALMA 

(Assistance for Land surface Modeling Activities) and ESMF (Earth System 

Modeling Framework) standards to facilitate inter-operation with other Earth 

system models. In order to demonstrate portability of LIS, the land surface 

modeling component will be implemented on a custom-designed Linux cluster 

and an SGI Origin 3000.  

 

2.0  Land Surface Modeling and Data Assimilation 
 

  In general, land surface modeling seeks to predict the terrestrial water, energy and 

biogeochemical processes by solving the governing equations of the soil-vegetation-

snowpack medium.  Land surface data assimilation seeks to synthesize data and land 

surface models to improve our ability to predict and understand these processes.  The 

ability to predict terrestrial water, energy and biogeochemical processes is critical for 

applications in weather and climate prediction, agricultural forecasting, water resources 

management, hazard mitigation and mobility assessment. 

 

In order to predict water, energy and biogeochemical processes using (typically 1-D 

vertical) partial differential equations, land surface models require three types of inputs:  

1) initial conditions, which describe the initial state of land surface; 2) boundary 

conditions, which describe both the upper (atmospheric) fluxes or states also known 

as "forcings" and the lower (soil) fluxes or states; and 3) parameters, which are a function 

of soil, vegetation, topography, etc., and are used to solve the governing equations. 

 

The proposed LIS framework will include various components that facilitate global land 

surface modeling within a data assimilation system framework. The main software 

components of the system are:  

• LIS driver: is a software system that is derived from the Land Data Assimilation 

System (LDAS) that integrates the use of land surface models in a data 

assimilation framework.  

• Land surface Models: LIS will include 3 different land surface models, namely, 

CLM, NOAH, and VIC.  

These components are explained in detail in the following sections.  

 

2.1 LIS driver  
 

The LIS driver that controls the execution of different land models is derived from 

LDAS. LDAS is a model control and input/output system (consisting of a number of 

subroutines, modules written in Fortran 90 source code) that drives multiple offline one-

dimensional land surface models (LSMs).  The one-dimensional LSMs such as CLM and 

NOAH, which are subroutines of LDAS, apply the governing equations of the physical 

processes of the soil-vegetation-snowpack medium. These land surface models aim to 

characterize the transfer of mass, energy, and momentum between a vegetated surface 

and the atmosphere. When there are multiple vegetation types inside a grid box, the grid 
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box is further divided into "tiles", with each tile representing a specific vegetation type 

within the grid box, in order to simulate sub-grid scale variability. 

   LDAS makes use of various satellite and ground based observation systems within a 

land data assimilation framework to produce optimal output fields of land surface states 

and fluxes. The LSM predictions are greatly improved through the use of a data 

assimilation environment such as the one provided by LDAS. In addition to being forced 

with real time output from numerical prediction models and satellite and radar 

precipitation measurements, LDAS derives model parameters from existing topography, 

vegetation and soil coverages. The model results are aggregated to various temporal and 

spatial scales, e.g., 3 hourly, 0.25 deg x 0.25 deg. The LDAS driver was used in the 

baselining results presented for Milestone E. The LIS driver used for demonstrating code 

improvements for Milestone H was developed by adopting the core LDAS driver and 

implementing code improvements for enhancing performance. The structure of LDAS 

driver was also redesigned using object oriented principles, providing adaptable 

interfaces for ease of code development and extensibility. Details of the LIS driver is 

presented in the interoperability document and the code improvements are presented in 

the code improvements documents for Milestone F. The LIS driver was modified to run 

on the LIS cluster and to include the VIC code for Milestone I. 

 

   The execution of LIS driver starts with reading in the user specifications. The user 

selects the model domain and spatial resolution, the duration and timestep of the run, the 

land surface model, the type of forcing from a list of model and observation based data 

sources, the number of ``tiles” per grid square (described below), the soil 

parameterization scheme, reading and writing of restart files, output specifications, and 

the functioning of several other enhancements including elevation correction and data 

assimilation.  

   The system then reads the vegetation information and assigns subgrid tiles on which to 

run the one-dimensional simulations. The LIS driver runs its 1-D land models on 

vegetation-based "tiles" to simulate variability below the scale of the model grid squares. 

A tile is not tied to a specific location within the grid square. Each tile represents the area 

covered by a given vegetation type. 

 

  Memory is dynamically allocated to the global variables, many of which exist within 

Fortran 90 modules. The model parameters are read and computed next. The time loop 

begins and forcing data is read, time/space interpolation is computed and modified as 

necessary. Forcing data is used to specify boundary conditions to the land surface model. 

The LSMs in the LIS driver are driven by atmospheric forcing data such as precipitation, 

radiation, wind speed, temperature, humidity, etc., from various sources. The LIS driver 

applies spatial interpolation to convert forcing data to the appropriate resolution required 

by the model. Since the forcing data is read in at certain regular intervals, the LIS driver 

also temporally interpolates time average or instantaneous data to that needed by the 

model at the current timestep. The selected model is run for a vector of ``tiles'', 

intermediate information is stored in modular arrays, and output and restart files are 

written at the specified output interval. 

 

2.2 Community Land Model (CLM) 
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   CLM (Community Land Model) is a 1-D land surface model, written in Fortran 90, 

developed by a grass-roots collaboration of scientists who have an interest in making a 

general land model available for public use. LIS currently uses CLM version 2.0. CLM 

version 2.0 was released in May 2002. The source code for CLM 2.0 is freely available 

from the National Center for Atmospheric Research (NCAR)  

(http://www.cgd.ucar.edu/tss/clm/). The CLM is used as the land model for the 

Community Climate System Model (CCSM) (http://www.ccsm.ucar.edu/), which 

includes the Community Atmosphere Model (CAM) (http://www.cgd.ucar.edu/cms/). 

CLM is executed with all forcing, parameters, dimensioning, output routines, and 

coupling performed by an external driver of the user's design (in this case done by 

LDAS).  CLM requires pre-processed data such as the land surface type, soil and 

vegetation parameters, model initialization, and atmospheric boundary conditions as 

input. The model applies finite-difference spatial discretization methods and a fully 

implicit time-integration scheme to numerically integrate the governing equations. The 

model subroutines apply the governing equations of the physical processes of the soil-

vegetation-snowpack medium, including the surface energy balance equation, Richards' 

(1931) equation for soil hydraulics, the diffusion equation for soil heat transfer, the 

energy-mass balance equation for the snowpack, and the Collatz et al. (1991) formulation 

for the conductance of canopy transpiration. 

 

2.3 The Community NOAH Land Surface Model 
 

  The community NOAH Land Surface Model is a stand-alone, uncoupled, 1-D column 

model freely available at the National Centers for Environmental Prediction (NCEP; 

ftp://ftp.ncep.noaa.gov/pub/gcp/ldas/noahlsm/).  The name is an acronym representing the 

various developers of the model (N: NCEP; O: Oregon State University, Dept. of 

Atmospheric Sciences; A: Air Force (both AFWA and AFRL - formerly AFGL, PL); and 

H: Hydrologic Research Lab - NWS (now Office of Hydrologic Dev -- OHD)).  NOAH 

can be executed in either coupled or uncoupled mode.  It has been coupled with the 

operational NCEP mesoscale Eta model (Chen et al., 1997) and its companion Eta Data 

Assimilation System (EDAS) (Rogers et al., 1996), and the NCEP Global Forecast 

System (GFS) and its companion Global Data Assimilation System (GDAS).  When 

NOAH is executed in uncoupled mode, near-surface atmospheric forcing data (e.g., 

precipitation, radiation, wind speed, temperature, humidity) is required as input. NOAH 

simulates soil moisture (both liquid and frozen), soil temperature, skin temperature, 

snowpack depth, snowpack water equivalent, canopy water content, and the energy flux 

and water flux terms of the surface energy balance and surface water balance. The model 

applies finite-difference spatial discretization methods and a Crank-Nicholson time-

integration scheme to numerically integrate the governing equations of the physical 

processes of the soil vegetation-snowpack medium, including the surface energy balance 

equation, Richards’ (1931) equation for soil hydraulics, the diffusion equation for soil 

heat transfer, the energy-mass balance equation for the snowpack, and the Jarvis (1976) 

equation for the conductance of canopy transpiration. 

 

2.4 Variable Infiltration Capacity (VIC) Model  
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Variable Infiltration Capacity (VIC) model is a macroscale hydrologic model, written in 

C, being developed at the University of Washington and Princeton University. The VIC 

code repository along with the model description and source code documentation is 

publicly available at http://hydrology.princeton.edu/research/lis/index.html. VIC is used 

in macroscopic land use models such as SEA - BASINS  

(http://boto.ocean.washington.edu/seasia/intro.htm). VIC is a semi-distributed, grid-based 

hydrological model, which parameterizes the dominant hydrometeorological processes 

taking place at the land surface - atmospheric interface. The execution of VIC model 

requires preprocessed data such as precipitation, temperature, meteorological forcing, soil 

and vegetation parameters, etc. as input. The model uses three soil layers and one 

vegetation layer with energy and moisture fluxes exchanged between the layers.  The 

VIC model represents surface and subsurface hydrologic processes on a spatially 

distributed (grid cell) basis. Partitioning grid cell areas to different vegetation classes can 

approximate sub-grid scale variation in vegetation characteristics. VIC models the 

processes governing the flux and storage of water and heat in each cell-sized system of 

vegetation and soil structure.    The water balance portion of VIC is based on three 

concepts: 

1) Division of grid-cell into fraction sub-grid vegetation coverage. 

2) The variable infiltration curve for rainfall/runoff partitioning at the land 

surface. 

3) A baseflow/deep soil moisture curve for lateral baseflow. 

 

Water balance calculations are preformed at three soil layers and within a vegetation 

canopy.  An energy balance is calculated at the land surface. A full description of 

algorithms in VIC can be found in the references listed at the VIC website. 

 

3 LIS software architecture 
 

This section describes the software architecture of the components of LIS.  The proposed 

LIS framework will have the following functional components: (1) A system for high 

resolution global land data assimilation system, involving several land surface models, 

and land data assimilation technologies. (2) A web-based user interface that accesses data 

mining, numerical modeling and visualization tools. To facilitate these features, LIS will 

integrate the use of various software systems such as LDAS, land surface models, 

GrADS – DODS, etc. LIS is also expected to act as a framework that enables the land 

surface modeling community to define new standards and also to assist in the definition 

and demonstration of the ESMF. As a result, the design of LIS will also feature the 

incorporation of new standards and specifications such as ALMA and ESMF. 

 

Figure 1 shows the initial LDAS software architecture. As mentioned earlier, the 

baselined version of LDAS includes CLM and NOAH land surface models. VIC land 

surface model will be incorporated in the Milestone I version of LDAS and LIS. 

 

Figure 2 presents the LIS software architecture. It can be noticed that LIS will be built 

upon the existing LDAS, with new components and expanded functionalities for the 

support of parallel processing, GrADS-DODS server-based data management, ALMA 
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and ESMF-compliance, web-based user interfaces, and system management of a Linux 

cluster platform 

 

The function of LIS dictates a highly modular system design and requires all the 

modules, or components, to work together smoothly and reliably. Figure 2 shows an 

overview of the LIS software architecture and its components, and their interactions. LIS 

will continuously take in relevant atmospheric observational data, and will subsequently 

use it to force the land surface models, and the land surface simulation is carried out in a 

highly parallel fashion. Meanwhile the large amount of output data will be efficiently 

managed to facilitate reliable and easy access. Moreover, LDAS, its interface to the three 

land models (CLM, NOAH, and VIC), and its input/output modules, will be partially 

compliant with ESMF, while the output data variables and formats, and the variables 

passed between LDAS and the three land models, will follow ALMA specification. 

Finally, LIS also has software components to manage the parallel job processing and 

monitor hardware status and manage them to ensure sustained high performance output 

and high availability in the Linux cluster environment. Following is a list of LIS software 

components: 

  

• Land surface modeling:  LDAS and the three land models – CLM, NOAH and 

VIC. LDAS can be configured to run one, two or all the three land models at the 

same time.  

• Parallel processing: implementation of the parallelization scheme. 

• GrADS-DODS server 

• Data retrieving 

• System monitoring: only applies to the LIS cluster environment.  

 

By the use of modular programming and by conforming to well established standards 

such as ALMA and ESMF, LIS is expected to provide a flexible, extensible framework to 

land surface modelers and researchers.  A more detailed discussion of the ESMF 

interfaces is located in Section 4 of the Interface Design for Interoperability. 

 
Raw data on the Internet

Data
retrieving

Input Output

LDAS

To atmospheric models

Input
data

Output
data

Single-
processor
platform

CLM NOAH

 

Figure 1: Current Land Data Assimilation System (LDAS) structure.  It uses CLM and NOAH land 
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models. 

 

 

 

Figure 2: Overview of LIS software architecture and its components designed for LIS cluster.  A 

subset of the components, the LDAS and parallel computing implementation, will also be tested on 

SGI Origin platforms. 

 

3.1 Software data structures 
 

This section describes the internal software data structures in LIS. As described earlier, 

the main component that drives different LSMs is the LIS driver. The one-dimensional 

land surface models such as CLM, NOAH, and VIC are included as subroutines of the 

LIS driver. LDAS, CLM, and NOAH are written in Fortran 90, and VIC is written in C. 

The LIS driver code is designed in a modular fashion, with a number of modules used to 

encapsulate data as well as parameters that are used to solve different governing 

equations. Please refer to the LIS code documentation http://lis.gsfc.nasa.gov/source/ for 

a detailed description of the source code.  

 

Figure 3 shows the organization of the main modules in the LIS driver.  

 

Inheritance  can be defined as the sharing of structure and behavior among classes in a 

hierarchical relationship. Although F90 does not directly support inheritance, it can be 

emulated using software constructs (ref: Decyk, V. K., Norton, C. D., and Szymanski, B. 

K. "How to Express C++ concepts in Fortran 90". 

http://exodus.physics.ucla.edu/Fortran95/ExpressC++.pdf) 

 

For example, inheritance in LIS is simulated by the lsm_module that captures the 

behavior of a land surface model. It also provides a hierarchical structure to all LSMs. 

The "abstract" interfaces in lsm_module (encapsulating the main behavior associated 

with the operation of a LSM) need to be implemented by all LSMs in LIS. As a standard 

for land surface model parameters, input data, and output evolves, this structure is further 
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expected to allow code sharing among different LSMs, all of them using common 

routines for intialization, setup, output etc. 

 

A more detailed description of the design is presented in the interoperability design 

document.  

 

Figure 3: Structure of modules in the LIS driver 

A brief description of the modules are presented below: 

 

LIS driver Modules 

lisdrv: is the main program in LIS driver. It controls the overall execution, and delegates 

tasks to the appropriated modules 
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lisdrv_module: This module contains the driver routines that control program execution, 

controlling of time, etc.  

 

lsm_module:  This module provides an abstraction of a land surface model, defining the 

interfaces and subroutines that are required for the execution of an LSM. The interfaces 

in this module need to be extended for incorporation of a new LSM into LIS.  

 

baseforcing_module: Similar to lsm_module, this module captures the behavior 

associated with introducing a new forcing scheme.  

 

grid_module:  This module is an abstract representation of a "grid" used in the LIS 

driver. The module includes non model specific parameters such as lat/lon and 

input/output forcing variables.  

 

tile_module : This module is a representation of the "tile" described in section 2.1 that is 

used to simulate sub-grid scale variability. This module includes specification of non-

model specific tile variables, such as lat/lon of tile, row/column of tile and properties 

associated with a tile.  

 

lis_module : This module specifies the variables used in the LIS driver such as the model 

domain specifications, type of land surface model used, type of forcing, specification of 

source files, etc. It does not include specification of tile space or grid space variables. 

This module is used by the main driver and subroutines that perform 

non-model specific computations such as spatial/temporal interpolation.  

 

obsradforcing_module: This module contains interfaces and subroutines that control 

the incorporation of observed radiation forcing. 

 

obsprecipforcing_module: This module contains the interfaces and subroutines that 

control the incorporation of observed precipitation forcing.  

 

spmdMod: This module contains MPI routines for initialization.  

 

time_manager: This module contains variables and routines for the control of time.  

time_manager provides methods that eventually call the ESMF time manager.  

 

tile_spmdMod:  This module contains routines for domain decomposition in tile space. 

 

grid_spmdMod: This module contains routines for domain decomposition on the grid 

domain.  

 

bilinear_interpMod and conserv_interpMod: These modules contains routines for 

calculating parameters required for spatial interpolation  

 

agrmetdomain_module: This module contains routines for calculating parameters 

required for spatial interpolation for AGRMET radiation forcing data  
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cmapdomain_module: This module contains routines for calculating parameters 

required for spatial interpolation for cmap precipitation forcing data  

 

LSM specific modules 

 

The LSMs included in the LIS driver implements the interfaces and routines defined in 

lsm_module. Currently the LIS driver includes NOAH and CLM models. The main  

Modules in these models are described below.  

 

clmtype: This module contains the definition of variables associated with CLM.  

clm_varcon: Defines the constants associated with CLM model execution.  

clm_varctl : Defines the run control variables associated with CLM model execution. 

 

noah_module : This module specifies one-dimensional NOAH land driver variable 

specification. It includes NOAH state parameters, output variables, etc. 

 

VIC structures 

 

VIC includes a number of structures that are used to encapsulate model options, forcing 

parameters, global simulation parameters, soil and vegetation parameters, etc. The main 

structures are:  

 

option_struct : This structure is used to store model options. 

global_param_struct : This structure is used to store the global parameters defined for 

the current simulation. 

soil_con_struct : This structure is used to store the constant variables for the soil in the 

current grid cell.  

veg_con_struct : This structure is used to store all constant parameters for the vegetation 

types in the current grid cell.  

atmos_data_struct : This structure is used to store the meterological forcing data for 

each time step. 

cell_data_struct :  This structure is used to store the grid cell specific variables, not 

included in the vegetation structures.  

energy_bal_struct : This structure is used to store all variables used to compute the 

energy balance and soil thermal fluxes.  

snow_data_struct:  This structure is used to store all variables used by the snow 

accumulation and ablation algorithm, and the snow interception algorithm. 

 

4 Hardware Platforms for LIS 
 

This section describes the hardware operational platforms intended for LIS. The SGI 

Origin 3000 will be used to implement and demonstrate only the high resolution, parallel, 

global land surface modeling and data assimilation components 

(LDAS/CLM/NOAH/VIC) of LIS. The fully operational LIS (with user interfaces and 

visualization components such as GrADS - DODS) will be demonstrated on a custom 

designed Linux cluster. The following section describes the hardware design of the 

cluster. 
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4.1 LIS cluster architecture 
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Figure 4: The physical architecture of the LIS Linux cluster. The cluster has 8 IO nodes and 192 

compute nodes. Each IO node has dual Athlon CPUs,  2GB RAM and Gigabit NICs,  and each 

compute node has a single Athlon CPU , 512MB RAM and a Fast Ethernet NIC. 

     

    Figure 4 shows the physical architecture of the LIS Linux cluster. The cluster consists of 

192 computing nodes. The cluster also includes 8 IO (input – output) nodes, specifically 

to handle the huge data management requirements. These nodes are interconnected with 8 

Ethernet switches. 

   

   The 192 computing nodes are divided into 8 sub-clusters, with 24 nodes in each sub-

cluster, interconnected with fast Ethernet via one of the 8 24-port fast Ethernet switches. 

Each switch also has two gigabit ports to connect the 8 IO nodes and the other switches.  

 

   The use of 8 sub-clusters and 8 IO nodes is mainly for the segregation of network 

traffic resulting from non-local file IO operations, and for the spreading of data storage so 

each IO node does not have to deal with single big files. So in average each IO node will 

only need to serve the IO requests of 24 computing nodes, and only store 1/8 of the 

output information, which makes the output volume manageable.  

 

4.2 System Monitoring 
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The system monitoring component is responsible for monitoring, maintaining and 

administering the LIS system on the Linux cluster to ensure its reliable operation and 

optimal performance output.  

 

We categorize the system management function into four levels: hardware level, 

interconnect level, operating system level and application software level. For the SGI 

Origin 3000 platform, we are not involved in the management of the hardware and 

interconnect levels. But for the Linux cluster, the hardware and interconnect level 

management is our responsibility and is critical to the overall stability and performance 

of the LIS system.  

 
The hardware level system management involves power-up and shutdown of the nodes, 

booting strategy and hardware status monitoring. Interconnect level management requires 

the monitoring of the link status of the network nodes, bandwidth usage and traffic 

statistics. Operating system level management takes care of system resource usages, such 

as CPU, memory and disk space usage. Application level management oversees the 

progress of the LIS jobs, configures different runs, analyze performance bottlenecks, and 

obtain performance profiles for fine-tuning. Dynamic error and diagnostic logs will be 

maintained for LDAS and the land surface models during the operation of LIS. The 

diagnostic logs will be available to the end users.  

 

4.2.1  Hardware monitoring data 

 

The following table summarizes the system data of various levels the management 

subsystem is designed to collect and analyze.  
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Table 1: Hardware monitoring and management data collection 

Category  Data Items Update frequency

Overall cpu/mem of each process 1min

Overall progress of whole job 2min

Progress of each process 1min

Timing of each module sampled, off-line

Memory usage of each module sampled, off-line

Total memory usage & biggest user 2min

Total CPU usage & biggest user 2min

Total disk space usage 2min

System up-time and running procs 2min

Bandwidth usage of each node 2min

Bandwidth usage of switches 2min

Latency measurements 2min

Packet drops measurements 2min

Fan speeds 10min

Chasis temperature 10min

Power supplies voltage 10min

LIS Cluster System Monitoring and Management Data

Operating system level

Interconnect level

Hardware level

Application level

 

 

4.2.2  Architecture and implementation 

 

The variety of system variables and management duties requires us to design a 

management system with modules performing individual and well-defined tasks. Figure 5 

shows the structured design of the system management functionalities for the Linux 

cluster platform. We will not implement such a system on SGI because the SGI platform 

is not under our management control.  

 

On the hardware level, we will design scripts to take advantage of the “Wake-on-Lan”  

technology for powering up the nodes smoothly in a well-defined pattern. The nodes will 

be able to boot across the network with the PXE technology, as well as from the local 

disk, to centralize system software management. After booting, each node’s hardware 

parameters, such as CPU temperature, cooling fan speeds and power supply voltages, will 

be collected by kernel modules called “lm-sensors”, and sent to the central management 

station with web-based display with automatic updates.  

  

On the interconnect level, we will use SNMP protocol as the underlying data collection 

and management mechanism, interfaced with MRTG for web-based display of network 

statistics. Additional network data can also be collected by Big Brother system and 

network monitor, also with web output.  
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On the operating system level, we will use SNMP and various OS shell commands and 

utilities to collect system data, and use MRTG and Big Brother as the interface.  

 

On the application level, we will develop CGI scripts, interfaced with OS commands and 

utilities, to provide a web-interface for the monitoring and control of LIS jobs and 

processes. Standard performance profiling and debugging tools will be used off-line to 

analyze sample runs for trouble-shooting and performance fine-tuning.   

 

OS resource

management

Interconnect

management

Hardware

management

Application
management

Monitoring and

management stations

Wake-on-Lan

LM78/80

SNMP

OS commands

Profiling tools

LIS hardware/software

system

OS commands

SNMP

PXE

 

Figure 5: LIS system monitoring and management architecture for the LIS Linux cluster. This 

system will not be implemented on SGI since it is not under our control. 

 

 

 

5 High performance computing in LIS 
 

Accurate initialization of the land surface moisture, carbon, and energy stores in a fully 

coupled climate system is critical for meteorological and hydrological prediction. 

Information about land surface processes is also of critical importance to real-world 

applications such as agricultural production, water resource management, flood 

prediction, water supply, etc. The development of LDAS has been motivated by the need 

for a system that facilitates land surface modeling with an assimilation system to 

incorporate model derived and remotely sensed data. LDAS system has been successfully 

used in simulations for North America at 1/8 degree resolution in both real time and long 

term (50 years) retrospective simulations. However, to truly address the land surface 

initialization and climate prediction problem, LDAS needs to be implemented globally at 

high resolution (1km). The computational and resource requirements increase 

significantly for global modeling at such high resolutions. The proposed LIS system will 

aim to make use of scalable computing technologies to meet the challenges posed by the 

global, high-resolution land surface modeling.  
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5.1 Parallel processing in land surface modeling 
 

Parallel computing is a powerful programming paradigm to deal with computationally 

intractable problems. The notion behind parallel programs is to divide the tasks at hand 

into a number of subtasks and solve them simultaneously using different processors. As a 

result, a parallel system can improve the performance of the code considerably.  

 

The land surface modeling component in LIS is designed to perform high-performance, 

parallel simulation of global, regional or local land surface processes with initially three 

land surface models: the CLM model, the NOAH model and the VIC model. Specifically, 

the land surface modeling component will interact with the data management components 

to obtain properly formatted input forcing data, and pass the forcing data, along with 

other static parameters, to the three land surface models through the LIS driver. Each of 

the land surface models carries out the simulation on a distributed, parallel hardware 

platform, either a Linux cluster or a SGI Origin 3000. The results are passed to the output 

component, which interacts with the data management subsystem to handle the output 

data.  
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Figure 6: LIS land surface modeling flowchart 

As shown in Figure 6, and described in detail in the land surface model documentation, 

land surface models proceed in a manner similar to other physical models.  Modeling 

proceeds given prior knowledge of the spatial and temporal domains of the simulation, in 

addition to initial conditions and parameters required to solve the equations of water and 

energy conservation within that domain.  Modeling proceeds according to increments of 
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time (“time steps”, typically 15 minutes), until the ending time is reached and data is 

written out for future runs and analysis. 

 

    The land surface modeling subsystem is designed to be running in parallel, both on a 

Linux cluster with 200 nodes, and on a SGI Origin 3000 platform with 512 processors. 

Although the hardware architecture differs greatly between the distributed-memory Linux 

cluster and the shared-memory SGI Origin 3000, our implementation of the land surface 

modeling programs will make this architectural difference fairly transparent: On the 

Linux cluster, each node will run a copy of the land surface modeling process; on the SGI 

Origin, each CPU will run a copy. Thus we establish a direct correspondence between a 

node in the Linux cluster and a CPU in the Origin 3000. 

 
Land surface processes have rather weak horizontal coupling on short time and large 

space scales, which enables highly efficient scaling across massively parallel 

computational resources. LIS aims to take advantage of this weak horizontal coupling of 

land surface processes by using a coarse-grained parallelization scheme, which does not 

require communication between the compute nodes. This design fits well with the 

distributed memory nature of the Linux cluster architecture.  

 

  The parallelization scheme employed in the land surface modeling component in LIS is 

based on a master slave paradigm, where a master processor performs the initializations, 

and domain decomposition. The compute nodes perform computations on the 

decomposed domain. The master processor carries out the global output routines once the 

compute nodes finish their tasks. The parallel processing component plays a critical role 

to connect the land surface modeling job to the underlying multi-processor parallel 

computing hardware platform, in our case, a Linux cluster or an SGI Origin 3000, to 

achieve the goal of near real-time processing of high-resolution land surface data. 

 

   We estimate that at 1km resolution LIS will deal with ~50,000 times more grid points 

than the 2ºx2.5º resolution. The baselining report from Milestone E estimates that the 

memory requirements at 1km is in the order of terabytes, which is unmanageable either 

on the Linux cluster or on the shared memory SGI platforms. The code improvements 

and redesigns conducted for Milestone F significantly reduced these memory 

requirements. However, the projected memory requirements from the improved LIS code 

from Milestone F still estimates approximately 500GB for 1km execution. This makes 

the simple paradigm, where the master handles the global initializations, intractable. To 

avoid the bottleneck from this scheme, we plan to redesign the input data flow taking 

advantage of the GrADS-DODS (GDS) servers’ features. GDS provides capabilities for a 

client to dynamically retrieve subsets of data on a global domain. A GDS Server on a 

master node will perform the tasks of serving data to the compute nodes. The domain 

decomposition can be achieved by the compute nodes making requests for data on the 

domain they are performing the computation, instead of a master processor distributing 

data to them.  

 

To satisfy the requirements of real-time operation, the job, which includes a grid 

representation of the global land surface, must be split into smaller pieces and run in 

parallel. We plan to divide the global surface into 10,000 small land pieces, and with 1km 
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resolution, each piece would require about 5 times as many computations as the 2ºx2.5º 

LDAS, and will take a single computing node about 200MB memory to run, and 10 

minutes to finish a 1-day simulation, based on the initial performance baselining of 

LDAS running at both 2ºx2.5º and 0.25ºx0.25º resolutions. The Linux cluster can 

consume approximately 200 pieces per round, and under ideal conditions, it will take the 

whole cluster about 50 rounds to finish the whole job. This will take 500 minutes, or 

about 9 hours, to finish a 1-day simulation of the whole global land surface, which 

satisfies the real-time requirement with enough extra room. We expect that the timings on 

the SGI Origin will be comparable to those on the cluster, although memory and disk 

limitations, some imposed by the queue structure, will likely prohibit effective use of that 

system for demonstrating LIS in a near-real-time mode.  However, we plan to 

demonstrate the LIS on the SGI Origin system as proof-of-concept. 

 

  A compute node’s job is to run a copy of the land surface modeling subsystem in 

its process space, compute a piece of land surface obtained from the IO node, and request 

another piece of land surface from the IO node as soon as it finishes the current piece, 

until the IO node refuses to give it any pieces, in which case there are no more land 

pieces are available and the compute node’s job is done.  Figure 7 shows the flow chart of 

the compute node’s job handling process.  
 

Node k gets
land piece k

Node k computes

land piece k

Node k finishes

land piece k

Node k notifies
IO nodes and sends

data

Compute node k
starts

Node k requests
a land piece

Request
granted?

Run
finished

Yes

No

 

Figure 7: Compute nodes flowchart for parallel computing of land surface modeling. A compute 

node does not communicate to other compute nodes. 
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Figure 8: Parallel computing control flowchart (left) and parallelization scheme (right) of a master 

node. 

 

   We propose to use a modified version of the “pool of tasks” scheme for the parallel 

processing of the land pieces. A pool of tasks paradigm is equivalent to a master – slave 

programming notion, where a single processor will act as a master node and distribute 

jobs to the slave (compute) nodes. In the LIS “pool of tasks” design, one of the IO nodes 

will act as a master node and another IO node will be designated as a backup to it.  

The master node will keep three tables on hand when starting the job: table of unfinished-

jobs, finished-jobs, and jobs-fetched. At the beginning, the 10,000 land pieces are listed 

in the "unfinished" table, and each compute node comes to the master to fetch a piece 

from it, and starts working on it. The master node then moves the fetched jobs to the 

"jobs-fetched" table, and starts a timer for each fetched job. The timer specification will 

be based on the existing knowledge of a single execution of a land surface model. When 

a compute node finishes a job and notifies the master node before the job’s corresponding 

timer runs out, this piece is regarded a finished job, and the master node moves it from 

the "fetched" table to the "finished" table. And the compute node goes on to fetch another 

job until the "unfinished" table is empty. If a fetched job's timer runs out before the 

compute node reports back, the master node then assumes that that particular compute 

node must have crashed, and then moves that timed-out job from the "fetched" table back 
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to the "unfinished" table for other compute nodes to fetch. Figure 8 shows the flowchart 

(left) of the master node’s job handling and scheduling process, and the various status of 

the three tables (right) the master node uses to keep track of the job progress at different 

corresponding stages in the flowchart.  

 

To maximize throughput of the system in a parallel environment, load balancing is 

required to keep the compute nodes busy by efficiently distributing the workload.  The 

use of a "pool of tasks" is effective in achieving automatic load balancing by minimizing 

the idle times of compute nodes, since the nodes that finish their computations will 

request more tasks than the ones that require more time for their computations. This 

automatic, asynchronous scheduling help in keeping the compute nodes busy without 

having to wait for other node's computations.  

 

As shown in Figure 8, as the land surface modeling process starts, the master node 

divides the globe into a number of smaller pieces. The inputs required by the land surface 

models, namely, initial conditions, boundary conditions, and parameters will be provided 

to the compute nodes before the land surface model run begins. The modeling process 

can be a fresh initialization (cold start) or a restart from a previously finished run. This 

process also requires preprocessing of the data such as time/space interpolation. The 

output from each compute node, after the computation, will be reassembled at the IO 

nodes.  

 

6 Data Management in LIS 
 

The data management subsystem in LIS is composed of the following functions: input 

data retrieval from the Internet, data pre-processing and post-processing, data 

interpolation and sub-setting, output data aggregation, storage, backup and retrieval. It 

links the other subsystem together, and ensures smooth end-to-end data flow, from the 

input raw data all the way to the output data satisfying LIS users’ various requests. The 

following sections describe the data flow and volume used in LIS operation, the use of 

GrADS-DODS server for data management, visualization, the Live Access Server (LAS) 

server for visualization, etc., and other functions such as data retrieval. 

 

The full data management design is now documented in the separate Data Management 

Design Document. This section  only describes the software architecture of the GrADS-

DODS server.  
 

6.1 GrADS-DODS server architecture 
 

   GrADS-DODS servers will be employed both to serve the input data to the land 

surface computing code, and to serve the output to the Internet users. Figure 10 shows the 

architecture of  the GrADS-DODS server. A GrADS-DODS server uses a typical client-

server architecture to communicate with the DODS clients. The communication protocol 

between a client and a server is HTTP. A GrADS-DODS server has the following 

components: Java servlets contained in the Tomcat servlet container, to handle the client 

requests and server replies via HTTP protocol; DODS server APIs, to parse the DODS 

requests and package output data; interface code, to translate the DODS requests into 
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GrADS calls; and finally, GrADS running in batch mode, to actually process the requests, 

and perform data-retrieving, sub-setting and processing on the server side. 

 

The LAS Server provides an additional web interface for users to search a data catalog, to 

visualize data interactively, and to download the data in various formats.  LAS uses perl 

scripts to retrieve the metadata from the LIS output files, and save the metadata in a SQL 

database system, MySQL.  The LAS server and its accompanying database, MySQL, will 

be running on the same LIS cluster node.   
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Figure 9: GrADS-DODS server architecture. 

 

 

7 Interoperability and Community Requirements 
 

Interoperability means the ability of a system to use parts of another system and also 

provide parts of itself that can be used by other systems to ease the cost of development 

and foster better interaction between different research groups. Code interoperability is 

important not only between components within an application, but also between different 

applications. LIS defines two different types of interoperability: internal and external. 

Internal interoperability mainly deals with the aspects of making components within LIS 

interoperable and the external interoperability deals with the interaction of LIS with other 

related scientific community applications and standards.  

  

 

7.1  Internal Interoperability 
 

 Interoperability within the LIS will allow for the addition of improved sources of input 

data and land surface models as they become available.  As currently designed, the LIS 
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has three land surface models available for use.  The LIS community has identified a 

number of other land surface models that would be scientifically beneficial.  Likewise 

with the input data, additional sources of input data would be scientifically beneficial if 

they were available in LIS.   

 

Interoperability within the LIS system is achieved by reorganizing the LIS driver to 

organize the code and module control into a framework by designing flexible and 

adaptive interfaces between subsystems.  The LIS driver makes use of the advanced 

features of the Fortran 90 programming language, which are especially useful for object- 

oriented programming.  The design uses object-oriented principles to provide a number 

of well-defined interfaces or "hook points" for adding additional land surface models and 

input data sets.  These interfaces are implemented by using a number of virtual function 

tables and the actual delegation of the calls at runtime is done at runtime by resolving the 

function names from the table. C language allows the capabilities to store functions, table 

them, and pass them as arguments. F90 allows passing of functions as arguments. By 

combining both these languages, LIS uses a complete set of operations with function 

pointers. The LIS driver will provide the land surface modeling community an avenue to 

easily add additional models or input data through the use of such an extensible system.  

A more detailed description can be found in Section 3 of the Interface Design for 

Interoperability for the Land Information System on the LIS web site. 

 

7.2 External Interoperability 
 

The LIS design also needs to be interoperable with frameworks outside of LIS so that the 

outputs from LIS can be useful to weather and climate models.  External  

interoperability is achieved by adopting the ALMA data exchange convention and by 

being a partially compliant component of the ESMF. By following the ALMA standard, 

the LIS land surface modeling system is guaranteed to exchange data with other land 

surface modeling systems that are also ALMA-compliant.  

 

ESMF compliance will allow us to interact with other Earth system models, such as 

atmospheric models or climate models with compliant interfaces.  ESMF is intended to 

provide a structured collection of building blocks that can be customized to develop 

model components.  ESMF can be broadly viewed as consisting of an infrastructure of 

utilities and data structures for building model components and a superstructure for 

coupling and running them.  ESMF provides a utility layer that presents a uniform 

interface for common system functions.  LIS has implemented a number of ESMF 

utilities including configuration, time management and use of basic ESMF data 

structures.  ESMF also defines a number of guidelines for applications that are intended 

to be coupled.  For gridded components, ESMF provides standard methods for 

components to be initialized in parallel configurations and destroyed.  LIS has also 

implemented a prototype using these interfaces to demonstrate pseudo-coupling with an 

atmospheric component.  

 

Figure 10 shows the structure of both internal and external interfaces in LIS. The input 

and output data in LIS will conform to ALMA data exchange standards. The LIS driver 

will provide a structured set of interfaces for incorporation of new LSMs. Further, the 
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LIS driver will provide an ESMF complaint interface and use the ESMF_State to 

exchange information with other ESMF compliant systems. A more detailed description 

of interoperability design issues can be found in the Interface Design for Interoperability 

for the Land Information System at the LIS web site. 

 

 

 

Figure 10 : Interfaces for Interoperability in LIS 

 

8 User interface design 
 

The user interface in LIS is an important component of LIS that will allow the interactive, 

flexible, use of the LIS hardware and software to users. The LIS user interface is intended 

to be web-based, and designed to allow for cascading complexity depending on the level 

of user’s need to control the system. The following sections present various facets of the 

user interface design of LIS. 

 

8.1 User interface components 
 

The user interface subsystem takes a typical multi-tier client-server system architecture. 

On the client side, a user has three types of client programs to use as the front-end: a web 

browser, an ftp client program (which can be integrated in a web browser), or a DODS 

client program. On the server side, a general purpose web server will be used to serve 

clients with a web browser, and a GrADS-DODS server will be deployed to serve DODS 

clients, and a FTP server to server ftp clients. Besides these components, CGI scripts and 

CGI-GrADS gateway scripts will be used as the middleware to perform dynamic 
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processing based on users’ interactive requests sent through web browsers.   The 

following figure shows the user interface architecture design. 

 

 

 

Figure 11: LIS user interface architecture. 

. 

Additional information on the User Interface Design for the Land Information System 

can be found at the LIS web site http://lis.gsfc.nasa.gov/documentation/. 
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Figure 12: Screenshot of LIS web entry page. 

8.2 User Levels  
 

   Outside users accessing the LIS are categorized into three levels, associated with 

different levels of data access and security requirements.  

 

    Level 1 users are the general public, who will access the LIS data primarily through a 

standard web browser. Information provided to this class includes static images and text, 

and some limited interactive content such as GIF/JPG/PNG images generated on the fly 

in response to users' regulated web input.  The static content, most of which is static html 

pages, is served via the web server, while the interactive content is generated via a three-

tier architecture with server-side GrADS as the image engine and below it the GrADS-

DODS server as the data engine to feed the server-side GrADS. This group of users does 

not have direct access to the data or LIS scientific computing power system, and their 

usage of system resources is very limited. Therefore, for this class of users we do not 

enforce any additional authentication or authorization procedures. It is also our intention 

to facilitate easy access to the data for education and outreach purposes. Figure 14 is a 

screenshot of the LIS entry page. 

 

Level 2 users have direct access to LIS data, either through our GrADS-DODS server by 

using a DODS client, or directly through HTTP downloads. The GrADS-DODS server 

provides the users with the ability and flexibility to get only a sub-set of the data they 

need.  To be authorized as Level 2 users, they will have to register with us first by filling 
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out web forms, and they will be authenticated using name and password before accessing 

the data. The GrADS-DODS server will impose a limit on system resource usages.  The 

GrADS-DODS server allows the system administrator to limit the system usage by 

configuring the following parameters for each authorized address: 

 

Table 2: Configurable GrADS-DODS parameters for access to level 2 users of LIS 

Parameter Description 

Subset limit Sets the maximum size in megabytes of a 

subset 

Generate limit  Sets the maximum size in kilobytes of a 

generated dataset 

Upload limit   Sets the maximum size in kilobytes of an 

uploaded dataset 

Time limit   Sets the maximum time in milliseconds 

that a dataset generation task is allowed 

Hit limit   Sets the maximum number of hits per hour 

permitted from a specific IP 

Abuse limit  Sets that length of time in hours an IP 

address will be blocked out after exceeding 

the hit limit 

Deny datasets  A comma delimited list of datasets that 

should not be accessible 

Allow datasets  A comma delimited list of datasets that 

should be accessible 
 

 

Level 3 users will have access to the parallel computing power of the LIS system, 

including an account on the LIS cluster and a web interface for submitting LIS jobs, as 

shown in Figure 14.  The configuration parameters entered into the web form will be 

converted to LIS configuration files to control model runs. A LIS configuration file is 

submitted to the LIS scheduler which runs the job and places the output in a user-unique 

output  directory in proper format for visualization.  All the parameters will have default 

values.   
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Figure 13: Sample design of LIS User Interface (Level 3) 
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